34,369 research outputs found

    Cooperative Multi-Cell Block Diagonalization with Per-Base-Station Power Constraints

    Full text link
    Block diagonalization (BD) is a practical linear precoding technique that eliminates the inter-user interference in downlink multiuser multiple-input multiple-output (MIMO) systems. In this paper, we apply BD to the downlink transmission in a cooperative multi-cell MIMO system, where the signals from different base stations (BSs) to all the mobile stations (MSs) are jointly designed with the perfect knowledge of the downlink channels and transmit messages. Specifically, we study the optimal BD precoder design to maximize the weighted sum-rate of all the MSs subject to a set of per-BS power constraints. This design problem is formulated in an auxiliary MIMO broadcast channel (BC) with a set of transmit power constraints corresponding to those for individual BSs in the multi-cell system. By applying convex optimization techniques, this paper develops an efficient algorithm to solve this problem, and derives the closed-form expression for the optimal BD precoding matrix. It is revealed that the optimal BD precoding vectors for each MS in the per-BS power constraint case are in general non-orthogonal, which differs from the conventional orthogonal BD precoder design for the MIMO-BC under one single sum-power constraint. Moreover, for the special case of single-antenna BSs and MSs, the proposed solution reduces to the optimal zero-forcing beamforming (ZF-BF) precoder design for the weighted sum-rate maximization in the multiple-input single-output (MISO) BC with per-antenna power constraints. Suboptimal and low-complexity BD/ZF-BF precoding schemes are also presented, and their achievable rates are compared against those with the optimal schemes.Comment: accepted in JSAC, special issue on cooperative communications on cellular networks, June 201

    Burrowing behaviour of signal crayfish, Pacifastacus leniusculus (Dana), in the River Great Ouse, England

    Get PDF
    Observations were made on crayfish burrows in five locations on the Great Ouse River. The burrow densities and the relative abundance of crayfish were observed. Also, laboratory experiments were carried out in order to study the characteristics and mechanisms of burrowing

    Secrecy Wireless Information and Power Transfer in OFDMA Systems

    Full text link
    In this paper, we consider simultaneous wireless information and power transfer (SWIPT) in orthogonal frequency division multiple access (OFDMA) systems with the coexistence of information receivers (IRs) and energy receivers (ERs). The IRs are served with best-effort secrecy data and the ERs harvest energy with minimum required harvested power. To enhance physical-layer security and yet satisfy energy harvesting requirements, we introduce a new frequency-domain artificial noise based approach. We study the optimal resource allocation for the weighted sum secrecy rate maximization via transmit power and subcarrier allocation. The considered problem is non-convex, while we propose an efficient algorithm for solving it based on Lagrange duality method. Simulation results illustrate the effectiveness of the proposed algorithm as compared against other heuristic schemes.Comment: To appear in Globecom 201
    corecore